
"AD-A259 126
AFIT/GEO/ENG/9 2D-Ol

DTIC')
S ELECTE

S JAN 1 11993

C

0
DESIGN OF A LABORATORY

COMPUTER INTERFACE

THESIS

AFIT/GEO/ENG/92D-01 Douglas L. Durand
Capt USAF

93-000841I1|11111l

Approved for public release; distribution unlimited.

WnFI.4' 054



AFIT/GEO/ENG/92D-01

DESIGN OF A LABORATORY

COMPUTER INTERFACE

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science ýnl IN5FCTED

Ditrib• _

by Av~ailability Codes

ASsoal Fador

Douglas L. Durand, B.E.E. Dist special

Capt USAF

Graduate Electro-Optics

June 1992

Approved for public release; distribution unlimited.



AFIT/GEO/ENG/92D-01
O preface

The AFIT Physics Department has acquired an LSI-11

minicomputer system for use in their laser spectroscopy

laboratory. The computer is to be used for data

acquisition, data reduction, and equipment control. To

perform these tasks, interface hardware and software is

necessary. This thesis describes the design and

implementation of this interface.

ii



Contents

Preface ............... ii
List of Figures ....... . iv
List of Tables ...... .......... . ............ . . . vAbstract . . . . . . . . . . . . . . . . . . . . ... vi

1. Introduction . . .................. 1
1.1 Background . . . . . . .............. 1
1.2 State of the Art--1982............... . . . . 1
1.3 Problem . . . . .................. 3
1.4 Laboratory Equipment ................... ...... . 3
1.5 Design Requirements .................. ..... 5
1.6 Design Approach ... . . . ........... 6
1.7 Summary ..................... . . . . . . 9

2. Interface Hardware . ........ ...... 10
2.1 Introduction ........................ ......... 10
2.2 Choice of Hardware . . . . . . . 10
2.3 Serial Interface ...... . .......... 11
2.4 Parallel Interface ......... . ........ 11
2.4.1 Clock Module ... ........ .................... 13
2.4.2 Paper Tape Module ..... * * 19
2.4.3 Multichannel Analyzer Module . . . 20

3. Interface Software ................ 25
3.1 Introduction. .. . . . . . . . . . . . . . . 25
3.2 Choice of Software . . . . . . . . . . 25
3.3 Addressing . . . . . . ......... . . . . . . 26
3.4 Interrupts . . . . . . . . . . . . . . . . . . . 27
3.5 Prewritten Programs ............... 28
3.5.1 CONNECT Utility . . . . . . . . . . . . . . 29
3.5.2 TAPEIN Utility . . . . . . 0 . 0 . . . 30
3.5.3 MCAIN Utility .. . . . . . . . . . . . . 31
3.5.4 IOPACK Subroutine Package . . . . . . . . . . 31

4. Results . . . . . . . . . . . . . . . . . . . . . . 354.1 Serial Interface ...... . . . . . . . . . . . 35

4.2 Parallel Interface ...... . . . . . . . . . . 35

5. Conclusions and Recommendations . o . . . . . . . . 37

Bibliography . . . . . . . . . . . . . . . . . . . . . 38

Appendix A: User's Manual . . . . . . . . . . . . . . 39
Contents . . . . . o. . . . . . . . . . . . . . . .. . 40

Appendix B: Software Flow Charts and Program Listings 57
Contents .. .. .. .. o.. .. .. .. .o. ..... 58

Appendix C: Design Cycle for Current (1992) Technology 88
Contents ....................... 89

iii



List of Figures

1.1 Computer/Interface System .. . . . . . . 4
1.2 Interface Hardware ............ ...... 8
1.3 Interface Software .......... ......... 8
2.1 Clock Module ...... . . .......... .15
2.2 Example Count Sequence. .. . . . . . . 18
2.3 Paper Tape Module ........ ............ . . 21
2.4 Multichannel Analyzer Module .......... . 23

iv



* List of Tables

TablePae

3.1 Register Address Allocation. . . .......... 27
3.2 Vector Allocation ............... 28

V



AFIT/GEO/ENG/92D-01

Abstract

An interface for the LSI-1l computer was designed and

implemented so that the computer supports data acquisition,

data reduction, and equipment control. The design includes

both hardware and software and addresses both parallel and

serial input/output (I/O).

The serial interface's hardware is simply a Serial Line

Unit card. This card plugs into the LSI-11 bus and

provides the signals necessary to interface EIA RS-232

compatible devices. A software utility was developed to

allow communication with the serial device and to allow

exchange of data files. Routines were written to allow

0 serial I/O through a FORTRAN program.

The interface's parallel hardware includes the general

purpose laboratory interface system (GPLIS) architecture.

In addition, hardware modules were designed to convert

certain device's signal levels to TTL levels. Software

utilities were developed to acquire and store parallel data

and routines were written to allow parallel I/O through a

FORTRAN program.

0

vi



1. INTRODUCTION

1.1 Background

In 1982, the AFIT Physics Department was in the process

of setting up a laser spectroscopy laboratory to support

both faculty and student in-house research. The facility

was to provide the Air Force with a powerful set of

state-of-the-art diagnostic tools in the tunable laser

arena. One of the major pieces of equipment acquired for

this facility was an LSI-11 minicomputer which was to be

used for data acquisition, data reduction, and equipment

control. This led the Physics Department to sponsor a

thesis topic with the objective of developing the hardware

and software necessary to interface the LSI-11 with a

general class of laser spectroscopy experiments.

This thesis project was begun in 1982. During that

year, the author completed the research, design, and

implementation of the interface system. Completion of the

thesis document itself, however, was delayed until 1992.

This thesis document therefore is written from two time

perspectives. The bulk of this document, from the

remainder of this introduction through Appendix B, is

written from the perspective of 1982. Appendix C brings

the document up to date by addressing a design cycle from a

1992 perspective.

1.2 State of the Art--1982

Laboratory computer systems vary in cost and

complexity. Digital Equipment Corporation (DEC) produces a

- 1



line of "MINC" computer systems which are small, PDP-11-

based laboratory computers. With their various plug-in

modules and powerful software, the MINC systems can perform

data input/output (I/O), data manipulation, and control.

The cost of such a system, however, can easily exceed

$30,000 (according to a technical representative from

Pioneer-Standard Electronics, Inc.).

IEEE Standard 583-1975, "Modular Instrumentation and

Digital Interface System," describes an interface system

which is sophisticated and complex. The Standard (Ref 1)

describes a "crate" of plug-in modules. These modules

allow various types of I/O undcer control of a "crate

controller." The computer communicates with the modules

* through the crate controller.

Jerry G. Black describes an architecture for a general

purpose laboratory interface system (GPLIS) (Ref 2). Like

the IEEE 583-1975 system, GPLIS is modular. GPLIS,

however, is much simpler and was designed specifically for

the LSI-11. Its simplicity leads to low cost.

In addition to these systems, there are many interface

cards manufactured for the LSI-11 (Ref 3). These cards

plug into the LSI-11 bus and provide data lines and control

lines for parallel and serial interfacing. A plug-in card

alone may be all that is necessary to interface a certain

device with the computer or the card may be part of a more

complex interface.

The laboratory's existing LSI-11 computer system is a

2



DEC compatible version marketed by Heath. It includes a

WJ-I1-UL computer, a WH-27 dual disk drive, and a Z-19

video terminal. Also included is a Micro Peripherals Inc.

Model 88G printer. Figure 1.1 shows a block diagram of the

computer system plus the required interface and

representative laboratory equipment (labelled Devices A

through D). The laboratory equipment is further described

in section 1.4 below.

1.3 Problem

The DEC MINC computer system and a system incorporating

all the features described in IEEE 583-1975 are both too

expensive for the laboratory to acquire. The problem is to

develop economical hardware and software necessary to

interface an LSI-11 with a general class of laser

spectroscopy experiments. The computer will perform data

acquisition, data reduction, and experiment control. In

addition, an instruction manual is needed to explain to the

users of the computer how to connect equipment to the

interface, what programs are necessary, and how to operate

the computer and interface. This manual must also explain

how future equipment might be interfaced with the computer.

1.4 Laboratory EguiDment

The laboratory equipment represented by Devices A

through D in Figure 1.1 are of various types. The current

experiments call for the use of serial devices (such as a

cassette tape drive, a wave meter, and a modem), parallel

devices (such as a paper tape reader and a multichannel

3



DEVICE DEVICE DEVICE DEVICE
A B C D

INTERFACE

DISK COMPUTER TERMINAL
WH-27 WH-11-UL Z-19

LIKE PRINTER

MPI MODEL 88G

Figure 1.1 Computer/Interface System

4



analyzer) plus analog voltage sampling. In addition,

* future devices must also be considered.

The serial devices presently in use operate at various

baud rates. A modem will be used to communicate with the

on-base ASD CYBER at the currently available baud rate of

300 (although this rate could increase in the future). The

cassette drive and the wave meter have switch-selectable

baud rates. A future device could be expected to operate

at any of the standard baud rates.

The parallel devices presently in use are the Hewlett

Packard Model HP2737 paper tape reader and the Model 5400

multichannel analyzer. Their signal levels are not TTL

compatible and therefore require conversion of their eight

data lines and two control lines. Data transmission is

controlled by handshaking thus allowing the computer to

control the data rate. A future device could be expected

to require signal conversion and some type of controlling

signals.

Analog I/O is also required. These signals will be

amplified external to the interface to levels suitable to

the interface and the device. The sampling rates are

expected to be slow--on the order of milliseconds.

1.5 Desian Reauirements

The interface must be flexible in that it must connect

with a variety of equipment--some with standard interfaces

and some without. It must also be adaptable to projected

future equipment.

5



The present experiments have the following

requirements:

1. Transfer of data via an RS-232 serial

interface to the computer's disk storage.

2. Transfer of data from paper tape to the

computer's disk storage.

3. Transfer )f data from the computer's disk

storage to a mainframe computer via a modem and phone

lines.

4. Acquisition of data from equipment controllers

and the transmission of control signals to these

controllers through an RS-232 serial interface.

5. Acquisition of data through analog-to-digital

(A/D) converters at timed intervals.

6. Transmission of signals through digital-to-

analog (D/A) converters to provide a means of implementing

a feedback loop of signal input, data processing, and

signal output for control of specialized experiments.

Since the LSI-11's operating system is a single-user

system and since it is expected that the computer will be

used by one person at a time, timesharing need not be

considered in this problem.

1.6 Desian APgroach

The interface system is one which allows the computer

to communicate with devices which transfer data in serial,

parallel, and analog form. The computer must receive data

from these various devices, manipulate and store the data,

6



and transmit the data to the devices.

The first step to solving the interfacing problem was

the familiarization with the computer system. This

involved studying the reference manuals and operating the

computer itself. A working knowledge of the computer's

operating system, programming languages, architecture, and

bus organization was necessary to determine what was

possible and practical for an interface.

Next, it was necessary to determine what hardware and

software were necessary to design an interface which

satisfied the requirements listed earlier. The problem

falls into two catagories--serial 1/0 and parallel 1/0.

The serial hardware must be RS-232 compatible and therefore

is of standard type. The parallel hardware is not of any

standard type. Each parallel device has signals which must

be converted to TTL levels. This breaks the parallel

interface design into modules--one for each device. Figure

1.2 shows a high-level block diagram of the hardware.

Software was likewise divided into two catagories--

serial and parallel 1/0. As shown in Figure 1.3, the

hierarchy for software development for both serial and

parallel 1/0 includes utilities and routines which in turn

contain device drivers. The serial I/0 with its standard

hardware,, require. development of only a single device

driver. Parallel software is more complex in that there

may be different device drivers for each device. Because

device drivers are specific to the hardware to be

7



COMPUTER

SERIAL PARALLEL INTERFACE
INTERFACE HARDWARE

HARDWARE
Device Modules

Serial A B C D
Device Parallel Devices

Figure 1.2 Interface Hardware

SERIAL PARALLEL INTERFACE
INTERFACE SOFTWARE

SOFTWARE

UTILITIES UTILITIES & ROUTINES
&

ROUTINES

Device Drivers
evice F

EDriver FAIFB c

Figure 1.3 Interface Software

8



interfaced, they must be implemented in low level assembly

language routines. Since a typical laboratory user may not

have expertise in assembly language, however, any assembly

language utilities and routines must be accessable to the

user without the need to know their details. Actual

operation of the interface will be through high-level

language.

With the hardware and software thus broken into levels,

the detailed design followed.

1.7 Summary

This chapter described the basic problem addressed by

the thesis project (i.e., interfacing an LSI-11 computer to

a general class of experiments). The background leading to

the project was outlined and the laboratory equipment,

design requirements, and design approach were discussed.

Chapter 2 describes the hardware of the interface from

the plug-in cards to the different interface modules.

Chapter 3 describes the software--addressing and interrupts

along with a description of the utility programs and the

subroutine package. Chapter 4 summarizes the results and

conclusions. Appendix A is a User's Manual which has been

written to help users of the computer/interface system.

Appendix B contains a listing of the assembly language

programs written for the interface. Appendix C, as noted

earlier, addresses a design cycle from a 1992 perspective.

9



2. INTERFACE HARDWARE

2.1 Introduction

This chapter describes the hardware developed for the

interface. The choice of existing hardware and the design

of customized hardware depended not only on the design

requirements, but also on the need to keep costs down.

2.2 Choice of Hardware

DEC's MINC system is a very powerful system for data

acquisition, manipulation, and display. With its

prewritten software routines and plug-in modules, it is

extremely flexible and easy to use. Its $30,000 price tag,

however, makes it unaffordable for the laser spectroscopy

laboratory.

The GPLIS (Ref 2) is a simple, low cost interface

architecture designed for the LSI-l1. It is much simpler

than the IEEE 583-1975 system which is more complex than

required. The GPLIS provides exactly what is required--a

multichannel parallel I/O interface. Using GPLIS as a

base, modules can be added to suit the specific

requirements of the devices to be used. This will be

discussed further in section 2.4.

For serial I/O, an off-the-shelf plug-in serial I/O

card was chosen. The card is the Heath WH-11-5 Serial Line

Unit (SLU). It will be described in section 2.3 below.

Thus the hardware choice was composed of a combination

of existing off-the-shelf hardware which could economically

meet the requirements for standardized serial I/O plus a

10



customized design based on the GPLIS architecture to meet

the requirements for the various parallel I/O devices. The

GPLIS and the modules described below were breadboarded and

tested separately before final assembly.

2.3 Serial Interface

To satisfy the requirement for an RS-232 serial I/O

port, an off-the-shelf plug-in serial line card was chosen

to economically interface with the serial devices which are

all standardized. The card is the Heath WH-11-5 SLU. This

SLU is compatible with the PDP-11 and LSI-11 (Ref 4:3).

The SLU card plugs into the LSI-11 bus and provides the

necessary interface lines for the RS-232 serial interface.

The card has jumper connections to select its memory

address and interrupt vector. These will be discussed

further in Chapter 3. The card has selectable baud rates

of 50, 75, 110, 134.5, 150, 200, 300, 600, 1200, 1800,

2400, 4800, or 9600 (Ref 4:2).

By using the appropriate plugs, the card can be

connected to data terminal equipment (DTE) such as

terminals or to data communication equipment (DCE) such as

modems or other computers.

Thus through this card, the computer can communicate

with any serial device conforming to RS-232.

2.4 Parallel Interface

A parallel interface is necessary for devices which

send and receive data more than one bit at a time. The

GPLIS architecture provides a simple and economical basis

11



for development of an interface to the various I/O devices

required.

The GPLIS first requires a plug-in card for the LSI-11

bus. This card is an off-the-shelf DEC DRVll Parallel Line

Unit (PLU). Like the SLU described above, the PLU is

PDP-11 and LSI-11 compatible and plugs into the LSI-11 bus

to provide the necessary interfacing lines (Ref 3:4-1). It

too has jumper connections for selecting memory address and

interrupt vector. These are described further in

Chapter 3.

The PLU has three important 16-bit registers: (1) the

input buffer (DRINBUF), (2) the output buffer (DROUTBUF),

and (3) the control/status register (DRCSR) (Ref 3:4-38).

The word formats for these registers are shown in

Appendix A, Table A.1.

The PLU has four important control lines in addition to

CSRI and CSRO from Table A.1. NEW DATA READY (NDR) and

DATA TRANSMITTED (DATA TRANS) are positive-going pulses.

NDR is used by GPLIS to latch data onto the output

latches. DATA TRANS signals completion of data input and

is used to acknowledge interrupt requests. INITIALIZE

(INIT) is generated on power-up and is used to clear

interrupt requests (Ref 3:4-39).

The PLU provides the connection from the computer bus

to the GPLIS-based design. Together, they provide a

multichannel 16-bit parallel interface. The following

sections describe the modules that were designed and

12



implemented to form this parallel interface.

2.4.1 Clock Module. Because the clock module

generates signals which can be used by other hardware

modules, it was the first hardware module designed for this

laboratory interface. It is used to generate interrupt

requests. These requests set request bits in DRCSR and if

the corresponding "enables" are set, the requests cause an

interrupt. The module also has "acknowledge" outputs which

are used by a user's device to signal that the computer has

recognized the interrupt request.

The clock module can generate two different interrupt

requests: one from its internal clock and one from an

external clock. These are called, respectively, REQ A and

REQ B. The internal clock can be used to generate

interrupt requests at software-selectable, timed intervals

of an integral number of milliseconds from one to 32,767.

If a user requires interrupts either at intervals outside

this range or at non-uniform intervals, the module will

accept external clock signals. There are two external

clock inputs: one for positive-going pulses and one for

negative-going pulses. The user may choose either one

depending on the device he is using.

The clock module requires one GPLIS input and one

output channel. Currently, the input channel is only a

dummy--it is needed only because DATA TRANS is used as the

acknowledgment signal (DATA TRANS is generated when a GPLIS

channel is read). A possible future use for this input

13



channel would be to read a device number which would be

used by the input routine. In the following paragraphs, it

is assumed that the clock module uses GPLIS input channel

#0 and output channel #0.

As shown in Figure 2.1, the module is connected to the

GPLIS bus and the ROCLK line. It is also connected to the

PLU's REQ A, REQ B, INIT, and DATA TRANS lines. The module

consists of a 74LS13 Schmitt Trigger, four cascaded 74LS193

synchronous 4-bit up/down counters, two 74LS109A dual J-K

flip-flops, a 74LS27 tri 3-input NOR gate, two 74LS04 hex

inverters, and resistors and capacitors.

The Schmitt Trigger is used as a monostable

multivibrator set to 1000 Hz. With a 330 ohm resistor,

C + C' = 1/(390)x(1000) (Ref 5:239). With C + C' = 2.564

microfarads, the output waveform was a 300 microsecond wide

pulse occurring once every millisecond. This waveform

provides the basic set of pulses to the module's counters

and flip-flops.

The 4-bit counters were cascaded to form a 16-bit

counter. This 16-bit counter's data lines were connected

in parallel to the output channel. This allows the counter

to be loaded from the output channel, thus providing

software-selectable interrupt intervals as explained in the

examples below.

Two flip-flops were used for the interrupt request

signals and one is necessary to produce the counter's LOAD

. signal.

14



4.7 K +5V 4.7 K +5V
9

2 5 13 12 4 j PR FEQAj PR a :L1 F2, 12
4 CK IC14_ 9

CK IC 14_ 7 Omm Cwry 13 CLR
K 01 10 D Od

c IC8 Oc1 0 Ob 2 15

15, A Om 3 +5V 12

14 LOAD
CLEAR 9.1 K IC 16

OPUS Count Caft FOFFBus DOM LIP OFF
1 13

.15 . is IC 7 19 4 sw 1 2 1 Wrr

- OD 80 DATA
14 17 7D 70 16 :jj 13 12 TPAW13 14 OD 60 15
12 13 5D 50 12 1 Baffow carry
11 a 4D 40 9 9 0 Od 7 4.7 K
10 7 3D 30 6 10 C 1c.9 Oc -1 +5V9 4 2D 20 5 1 Ob 2

3 2 15 6 3 5
ID 10 A on

Clock Cbw LOAD 2 j PR 0 6 FEO B

T",

ý-14 CLEAR 4
3 CK IC 15_ 7

+5V K CLR 0 to

RD CLX 4.7 K cow 0=11 TN$EDRW

6 

FEOmm LO
-PST.M 4) TWe Modtdo

L5 >0 6 4 5
3 7

13 12 
+5V

E4

awrow on" 9.1 K ic 16
7 Is 00 80 19 9 D Od 7
.6 17 7D 70 is 110 A OFF.5. 14 15 1 C /clo ac SW 4 5T-- OD so 6 Ob -1 SW2 wffA 13 12 Is1 w 50 -7ý 3

a 4D 4Q 9 1 r
8 LOAD DATA2 7 3D 30 14- CLEAR

_1_ 4 2D 20 5 TPAW
0 3 10 2

Ocwt Caffit

IC 13 Dwm TAPEý- fmn
4 SW3 FBMOLE-

Bus wo 
13 12 EKT 2 T40 MD" 5
go Ow Cwq (IWERTERSon: 

7
--- L D Qd ic 18)

10 C Ic 11 Oc 6
71:C12 L---, B Qb -1 SW 4 9

L -Ls- A as 3

7 

1

2 LOAD 41
4
5

6 
IT CLEAR 

4;
COW Om"
DWM up 3

C 
+5V

2
EKr off ExrPmffmRs 9.1 K CLOCK AM ACK

ic 17) K3(,.4

Pa Pq" A3 Oppenft A) kv IC W&dWa*m)

Figure 2.1 Clock Module

15



The sequence of a timed interrupt is as follows:

1. A 16-bit number is output to GPLIS channel #0.

2. The ROCLK latches this number on the output

latches and also clears (sets to zero) the counter.

3. The next pulse from the Schmitt Trigger causes

a "count down" which generates a BORROW because the count

was zero.

4. The borrow is used to clock two different

flip-flops:

a. One flip-flop generates the LOAD signal

causing the counter to be loaded from the output latches.

This flip-flop is cleared by the next trigger pulse.

b. The other flip-flop generates the REQ A

signal. This flip-flop is cleared by the INIT or DATA

TRANS or by the switch. While the switch is in the "off"

position, no REQ A is generated even though the trigger and

counter are still running.

5. The next count down pulse causes the newly

loaded number to be decremented by one. This continues

until the count is decremented to zero. Then the next

count down generates a BORROW and the sequence continues

from step 4.

As an example, assume the number 4 is output to channel

#0. The number is latched and the counters are cleared by

ROCLK. The next Schmitt Trigger pulse causes a BORROW

which causes the number 4 to be loaded into the counter and

also clocks the REQ A flip-flop. The next count down

16



decrements the count to 3; the next decrements the count to

2; then 1; then 0; and then BORROW--completing the cycle:

4, 3, 2, 1, 0, 4, 3, 2, 1, 0, . . . . A REQ A is generated

every five counts. So to generate REQ A every T milli-

seconds, it is necessary to output (T-i) to channel #0.

Figure 2.2 shows the example sequence.

The external interrupt is simply a flip-flop with

inverters. The inverters allow the user to input either

positive-going or negative-going pulses to generate REQ B.

To acknowledge either REQ A or REQ B, the computer

performs a read from a GPLIS channel (dummy channel #0 or

any other channel). This generates a DATA TRANS pulse on

the PLU which is connected through NOR gates to the

flip-flops' CLEARs. This turns off REQ A or REQ B (or

both).

The flip-flops are also cleared by the INIT signals

from the PLU. These signals are automatically generated on

power-up (Ref 3:4-39). As mentioned earlier, REQ A can be

disabled by a switch which forces the flip-flop to clear.

The external acknowledge is the DATA TRANS pulse. It

is available as a positive-going or negative-going three

microsecond pulse.

An example of a typical timed interrupt is the

following: Assume a user wishes to input data from GPLIS

channel #5 at 100 millisecond intervals. Meanwhile, the

computer is to perform some other task. Solution--The

clock module is set to generate interrupt requests at 100

17



C',

0

V-

I N

00 8

-- --

w- V)

---------- --- -- - --- --- - -- - ---

-----------E 9

-- ---- -- -- -- -- -- -- ---- -- -- -

--- --- --- --- --- ------- --- --

-- - -- --- - -- -- - -- - --

mW

-- -- - --- - -- -- -- -- - -- - --

- --- --- - --- ------ --- --



millisecond intervals (output 99 to channel #0) and its

S interrupt enable is set (INT ENB A set to 1). Every 100

milliseconds, REQ A is generated which causes the computer

to jump to the interrupt routine which in this case inputs

data from channel #5. REQ A is turned off by DATA TRANS

and the computer returns to its other task until the next

REQ A.

An example of a typical external interrupt is the

following: Assume a user wishes to input data from channel

#6 whenever a certain laboratory device sends a positive-

going pulse. Assume also that the user requires an

acknowledgment pulse which is negative-going. No other

tasks are required of the computer in this example.

Solution--In this case, the user will use a routine which

tests the interrupt request bit (REQ B) in DRCSR and

performs the input when the bit is set. In this simplified

example, rather than jumping to an interrupt routine, the

computer simply executes a wait-loop until REQ B is set.

The user's device can then request an interrupt, send data,

and when it receives an acknowledgment, it will send

further data; and so on until all data is sent.

The next two modules were also designed specifically

for this laboratory interface. They use signals from the

clock module just described and they provide the hardware

interface to specific laboratory devices.

2.4.2 PaDer Tape Module. The paper tape module

5 converts the -12 volt signal levels from the HP2737 paper

19



tape reader to +5 volt signals used by the computer. The

0 module also provides a TAPEDRIVE signal to the tape reader.

The tape reader's signals are positive logic (-12 volts

= hole punched = logic 1 and 0 volts = no hole punched -

logic 0). The module diagram and its level conversion

circuit are shown in Figure 2.3. After level conversion,

bits 0 through 7 are connected to a GPLIS input channel.

The FEEDHOLE signal from the tape reader is connected to

the clock module's external interrupt and is used to signal

the computer to read the byte. The clock module's external

acknowledge is connected to the tape reader's TAPEDRIVE

signal which causes the tape to advance.

Data transfer is as follows:

* 1. The tape feeds through the tape reader until

the FEEDHOLE is under the read head. This signals the

computer to read the byte.

2. The computer reads the byte and sends

TAPEDRIVE causing the tape to advance until another

FEEDHOLE is under the feed head.

3. This cycle repeats until the entire tape has

run through the reader.

2.4.3 Multichannel Analyzer Module. Due to time

constraints, the multichannel analyzer (MCA) module was not

implemented as an interface. Its design is presented here

for consideration as a future upgrade to the system.

The MCA module converts the +12 volt signals from the

HP5400 multichannel analyzer to +5 volt signals used by the

20



Tape Reader -12v to 5v
Socket Converters 

PI

0 INO_____

IN OUT172A 2Y 3 7
Q1 0A3 2Y

+ 1 2 3

01-I OUT5.02 02 = A H1 85-0 1 1
(Se~2uA312bc$ 1A1I IderIcaon

Figure 2.3 Pape TapMoul

0AERV t W3
SwichClckM2ul



computer. The module also provides a +12 volt control

signal used by the MCA.

The signals from the MCA were intended to operate a

paper tape punch. They are negative logic (+12 volts =

logic 0 and 0 volts = logic 1). The module diagram and its

level conversion circuit are shown in Figure 2.4. After

level conversion, bits 0 through 7 are connected to a GPLIS

input channel. The MCA's PUNCH signal is connected to the

clock module's external interrupt and is used to signal the

computer to read the byte. The clock module's external

acknowledge is connected to the MCA's FLAG signal which is

used to signal for another byte.

With this module, the system emulates a paper tape

punch. Instead of storing data on tape, however, the

system stores the data on disk.

2.5 Summary.

This chapter described the interface hardware. Serial

I/O is performed easily through a Serial Line Unit card.

The card generates the signals required by the serial

devices and by the LSI-11 bus. The Heath WH-11-5 SLU was

chosen because it satisfies the requirements for serial I/O

and because there was an unused WH-11-5 in the system. The

parallel interface, on the other hand, required a custom

design to provide for I/O to the various nonstandard

devices to be used in the laboratory. The GPLIS

architecture was chosen as a design basis to perform

* multichannel parallel I/O because it was specifically

22



Multichannel + 12v to 5v
Analyzer Converters

bk IIN OUT GPLiS

1IN OUT

TIN OUT 1
+ 23 .I 'IN OUT3

OIN OUT" s.":6 IN OUT---

7 IN OUT
PUNCH IN OUT T X

CLOCKI
II v to + 12v

nverte. Converter
T*PE

DIV-' OUT IN/ From

• I •EXT ACKT

Figure 2.4 Mutichanne Anlye (CA odl

leolator 0 U T

+ 12v to 5v Converter

IN Isolator 0 OUT

5V to + 12v Converter

Figure 2.4 Multichannel Analyzer (MCA) Module

e2



designed for the LSI-11 and because it is simple and

inexpensive. The parallel interface design including its

modules was described in detail. The next chapter will

describe the software needed to run these components.

24



3. INTERFACE SOFTWARE

3.1 Introduction

This chapter describes the system's software from high

level language to assembly language. At the assembly

level, the addressing and interrupts are described. The

utilities and subroutines which were developed to become

the "prewritten programs" (from a future user's standpoint)

are also described. At the high level, the choice of

programming language is explained.

3.2 Choice of Software

The existing laboratory computer has three available

programming languages: (1) assembly language, (2) BASIC,

and (3) FORTRAN (Ref 5). Since the operating system

recognizes only certain standard devices, software had to

be developed to perform I/O for the laboratory interface.

Because this I/O software had to manipulate low level

information (e.g., registers and memory addresses) which

depended on the detailed hardware design, a low level

programming language was required. Assembly language

programming was therefore selected as the available low

level software. However, because the typical laboratory

user may not have expertise in assembly language, operation

of the interface must be thorough one of the available high

level languages (BASIC or FORTRAN).

The requirement to use assembly language to manipulate

low level information while still allowing a user to

program through a high level language led to the need to

25



develop all assembly language I/O routines as prewritten

packages (from a future user's standpoint). These assembly

language routines would be available to the user through

high level language subroutine calls or through the

operating system. FORTRAN was chosen as the high level

programming language because it allows subroutine calls to

assembly language programs. The I/O routines were

developed and compiled into a package which the user,can

link to his FORTRAN program. All a user needs to know are

the routine names and their arguments.

3.3 Addressinu

Before data I/O can occur, the location of the data's

source or destination must be specified. The interface has

two types of addressing. First, the Serial Line Unit (SLU)

and Parallel Line Unit (PLU) have their addresses. Second,

each GPLIS input and output channel has an "address" or

channel number. GPLIS addressing is explained in Ref 2.

The addressing for the SLU and PLU is explained below.

As mentioned in Chapter 2, the SLU and PLU have jumper

connections for address selection. The SLU has four

accessible registers and the PLU has three accessible

registers. Each register is 16 bits (2 bytes) wide and has

its own address which is treated like a memory address by

the computer. Table 3.1 shows how the register addresses

are allocated (the x's denote the jumper selectable portion

of the address). (Ref 3:6-5, 6-13)

The allowable addresses for these registers can range

26



Table 3.1 Register Address Allocation

SERIAL LINE UNIT

Address (base 8) Reaister (16-bit. 2 byte)
lxxxx0 RCSR (Receiver control/status)
lxxxx2 RBUF (Receiver data buffer)
lxxxx4 XCSR (Transmitter control/status)
lxxxx6 XBUF (Transmitter data buffer)

PARALLEL LINE UNIT

Address (base 81 Reaister (16-bit. 2 byte)
lxxxx0 DRCSR (control/status)
lxxxx2 DROUTBUF (output data buffer)
lxxxx4 DRINBUF (input data buffer)

Source: Ref 3:6-5, 6-13.

from 160000 base 8 through 177777 base 8. Addresses were

chosen for the SLU and PLU which did not conflict with

reserved addresses as follows: SLU, 175610 base 8; PLU,

167770 base 8.

3.4 Interrupts
Whenever there is an interrupt, the CPU saves its

current program address and program status word. It then

loads a new address and status word and proceeds (Ref 2).

In the LSI-1l, these addresses and status words are stored

in low memory and are pointed to by interrupt vectors.

Each vector points to a 2 word (4 byte) data block. The

low order word is the address of the interrupt routine and

the high order word is the processor status word. The

allowable vectors can range from 0 through 377 base 8 and

are allocated as in Table 3.2. (Ref 3:6-6, 6-14)

27



Table 3.2 Vector Allocation

SERIAL LINE UNIT

Vector Description
000xx0 Receiver interrupt vector
000xx4 Transmitter interrupt vector

PARALLEL LINE UNIT

Vector Description
000xx0 Interrupt A
000xx4 Interrupt B

Source: Ref 3:6-6, 6-14.

One of the tasks of the prewritten initialization

program (described below) is to store the appropriate

addresses and status words in the locations pointed to by

the vectors. These vectors were arbitrarily chosen to be

110 and 114 base 8 for the SLU; and 300 and 304 for the

PLU.

3.5 Prewritten Proarams

This section describes the prewritten assembly language

programs developed for the interface. Again, these

programs are "prewritten" from the standpoint of a future

user; they were developed specifically for this laboratory

interface. The programs include two utility programs,

CONNECT and TAPEIN, and a package of subroutines, IOPACK.

IOPACK is linked to the user's FORTRAN program to allow him

to access the interface from his FORTRAN program. The

programs were written, debugged, and tested separately.

Appendix A has step-by-step instructions for the use of

28



these programs and Appendix B contains the software flow

charts and program listings.

3.5.1 CONNECT Utility, The CONNECT utility is run

from the computer's monitor and is used to access serial

devices from the computer's terminal. While CONNECT is

running, the system behaves as if the terminal were

connected directly to the serial device. In addition,

CONNECT offers some useful tools to the user.

The first tool allows the user to record data from the

serial device on the computer's disk. To start recording,

the user enters CONTROL-R. After this, all data from the

serial device is stored on disk as it appears on the

screen. The user stops recording by entering CONTROL-T or

by exiting CONNECT (CONTROL-P). The record routine is

double buffered allowing the program to record data at

rates up to 1200 baud.

The second tool allows the user to transmit a file from

the computer's disk to the serial device. The user enters

CONTROL-E and a previously stored file is transmitted as it

appears on the screen.

In addition, if the user desires to perform other

operations with the computer, he may do so by exiting

CONNECT (CONTROL-P). This does not disturb the device and

the user may reenter CONNECT to pick up where he left off.

From the device's point of view, it is as if the user had

simply sat idle instead of having actually switched from

the device to the computer and back to the device.

29



One typical use for CONNECT would be for communication

with the on-base CYBER. In this case, the user plugs the

modem into the interface, runs CONNECT, and initiates

communication with the CYBER as if the terminal were

connected directly to the modem. The user may read a file

from the CYBER to his disk, switch attention to the

computer and perhaps edit that file, and then switch back

to the CYBER and replace the file with the updated version.

Another typical use for CONNECT would be for

communication with a cassette tape drive. The Canberra

tape drives can be operated from a terminal and therefore

can be operated through CONNECT. The user could read data

from the tape to disk or from disk to tape. Thus, CONNECT

is a general purpose utility for exchanging data with

serial devices.

3.5.2 TAPEIN Utility. The TAPEIN utility is run from

the computer's monitor and is used to read data from a

paper tape and store it on disk. To read a tape, the user

loads the tape in the tape reader, plugs the reader into

the interface, and then runs TAPEIN. The program reads the

data through the paper tape module of the interface and

stores the data on disk.

A typical use for the TAPEIN utility would be to read

paper tapes produced by the Hewlett Packard multichannel

analyzer (NCA). The data from the tapes could be stored on

disk for later manipulation by a user-written program or

for transmission to the CYBER for high-quality plotting on

30



a CALCOMP plotter.

3.5.3 MCAIN Utility. Due to time constraints, the

multichannel analyzer (MCA) module was not implemented on

the interface. It is outlined here for consideration as a

future upgrade to the system.

The MCAIN utility is run from the computer's monitor

and is used to read data from the HP5400 MCA and to store

the data on disk. To read data, the user plugs the MCA

into the interface, runs MCAIN, and operates the MCA as if

he were punching a tape. The computer program reads the

data through the MCA module and stores the data on disk.

The user can thus avoid the use of paper tape altogether if

he so desires.

3.5.4 IOPACK Subroutine Package, IOPACK is a set of

assembly language subroutines which may be called from a

user's FORTRAN program. The subroutines allow the user

access to the interface through FORTRAN without having to

know the details of how the subroutines work. The user

needs to know only the routine name and its arguments.

The simple I/O routines are PARIN, PAROUT, SERIN, and

SEROUT. PARIN and PAROUT are used, respectively, to input

and output 16-bit words to a GPLIS channel. They have two

arguments--a GPLIS channel number and the 16-bit data

word. The arguments are both FORTRAN integers. An example

of a subroutine call is the following: CALL

PARIN(2,IVOLT). This would read GPLIS input channel #2

into the variable IVOLT where IVOLT might represent an

31



analog voltage.

SERIN and SEROUT are used, respectively, to input and

output serial data. These routines have only one

argument--the data byte which is a FORTRAN integer. An

example subroutine call is shown in the following program

segment:

DO 10 I=1,6
CALL SERIN(CHAR(I))

10 CONTINUE

In this segment, a six element array of ASCII

characters is read. These could be later converted into a

real number for further manipulation.

These first four routines allow simple I/O in either

parallel or serial form. The remaining routines allow the

user to take advantage of the interrupt capability of the

clock module developed for the interface.

The first of these routines, INIT, sets up the

interrupt vectors. INIT must be called from the user's

FORTRAN program to enable the user to run interrupt

routines. Two assembly language interrupt routines were

developed: AINT and BINT. Each time one of the interrupt

requests (REQ A or REQ B) is received, AINT or BINT

increments its respective counter which can be tested by

two other two subroutines, WAITA and WAITB. WAITA and

WAITB allow the user to bring his FORTRAN program to a

pause until either a REQ A or REQ B is received. Finally,

two assembly language subroutines were developed to allow

32



the user to enable and disable the interrupts from within

his FORTRAN program: INTON and INTOFF. The operation of

these routines will be made clear in the example below.

A typical use of the interrupt capability would be to

sample a GPLIS input channel at a timed interval. In this

example, assume the input channel is #5 and the timed

interval is 100 milliseconds. To accomplish this, the user

would write a FORTRAN program which contains the following

program segment:

PAROUT(0,99)
INIT
DO 10 I=1,1000
WAITA
PARIN (5, SAMPLE (I) )

10 CONTINUE
INTOFF

In the above example, PAROUT is used to set the clock

module so that it generates a REQ A signal every

100 milliseconds (see section 2.4.1). INIT initializes the

interrupt capability and enables the interrupts. Each time

a REQ A signal is received, the assembly language interrupt

routine AINT increments a counter. WAITA checks that

counter and causes the program to pause until REQ A is

received. Then PARIN is used to input the sample data.

After the DO-loop, the interrupts are disabled with INTOFF.

A warning message is generated if either of the

following occurs: (1) two or more REQ A signals are

received before WAITA is called or (2) WAITA is called

after REQ A has been generated. These warning messages

33



alert the user to an error in his FORTRAN program which is

causing too much time to elapse between WAITA calls.

3.6 Summary

This chapter described the software aspects of the

interface. FORTRA'• was chosen as the high level

programming language for the user because it allows

subroutine calls to the assembly language programs

developed to operate the interface. These programs were

described in detail as were the two utility programs. The

goal of the software development was to allow the user to

stay at as high a level as possible so he need not worry

about the low level details. The next chapter summarizes

the results of the hardware and software system design.

34



4. RESULTS

This chapter summarizes the results of the system

design and of the test procedures.

4.1 Serial Interface

To satisfy the requirement for communication with

RS-232 compatible serial devices, an off-the-shelf plug-in

Serial Line Unit was used. The SLU allows communication

with DCEs or DTEs at baud rates of 50 to 9600. Through the

CONNECT utility developed for this interface, the user may

communicate with a device through the computer's terminal

and he may transmit and receive data files. Also, through

the SERIN and SEROUT routines developed for this interface,

the user may access a serial device through a FORTRAN

program.

The hardware and software was tested by actually

communicating with various serial devices. These devices

included a microcomputer, a terminal, a cassette tape

drive, a wave meter, and a modem which was connected to the

on-base CYBER. Data was sent and received at the various

baud rates at which these devices were able to

communicate. With a microcomputer sending a continuous

stream of data, it was found that the CONNECT utility can

record data reliably at rates up to 1200 baud. Above that

rate, the computer could not empty its buffers fast enough

to avoid losing data.

4.2 Parallel Interface

The GPLIS architecture was used to provide parallel

35



data communication. Connection of the developed hardware

0 to the computer's bus was through an off-the-shelf plug-in

Parallel Line Unit. The GPLIS implementation plus the

specific interface modules allowed parallel I/O with the

various nonstandard laboratory devices. The clock module

was developed to generate interrupts--either timed or

external--and to send acknowledge signals. Two other

modules were developed to convert signals to TTL levels so

that the interface could accept data from a paper tape

reader or a multichannel analyzer (as noted earlier, the

MCA module was designed, but not implemented).

The software associated with the parallel interface

includes the TAPEIN utility and the PARIN and PAROUT

routines. The utility allows data input to disk and the

routines allow parallel I/O through a FORTRAN program.

The clock module was tested and adjusted by monitoring

its signals with an oscilloscope. By adjusting the

variable capacitor, the COUNTDOWN signal was set at a

frequency of 1000 Hz. Loading the timer with various

values via software produced interrupt requests at various

timed intervals as explained in section 2.4.1.

The software utility was tested through the actual

recording of data from the paper tape reader. The files

produced by this utility can be displayed on the terminal

or printer or they may be used as an input file to a

FORTRAN program.

Conclusions and recommendations are provided next.

36



5. CONCLUSIONS AND RECOMMENDATIONS

The interface system is a flexible, expandable system

for data acquisition, data manipulation, communication, and

control. It is flexible because it can be operated by a

user via FORTRAN subroutine calls or operating system

commands. The user can therefore customize operation to

suit his application. It is expandable because of its

modular architecture. Additional input or output channels

may be connected to the GPLIS bus (see Ref 2). As

presently configured, a total of 16 input and 16 output

channels are possible.

Users will need to become familiar with the system by

reading the reference manuals (Refs 6, 7, and 8) and the

User's Manual (Appendix A). In general, the users need not

know assembly language programming to use the system.

One member of the laboratory staff, however, should

become familiar with PDP-11 assembly language programming

(see Ref 9). This person would be designated the "System

Programmer." The System Programmer would be the expert of

the system and would be responsible for maintenance and

modification of the system. He would also keep spare

copies of the system's software disks to restore the system

in case of accidental destruction of data on a system

disk. In general, the System Programmer would be

responsible for maintaining the system as a useful device

in the laser spectroscopy laboratory.

37



BIBLIOGRAPHY

1. IEEE Std 583-1975. Modular Instrumentation and Digital
Interface System (CAMAC). New York: The Institute of
Electrical and Electronics Engineers, Inc. 1975.

2. Black, Jerry G. "Simple Laboratory Computer Interface
System," Review of Scientific Instrumentation. 51 (5):
pp 655-7, May 1980.

3. EK-LSIlI-TM-003. LSI-II. PDP-11/03 User's Manual.
Maynard, Mass., Digital Equipment Corp., 1976.

4. 595-2158-01. Serial Interface Module. Model WH1-5,
Operation/Service Manual. Benton Harbor, Mich.: Heath
Company, 1978.

5. Greenfield, Joseph D. Practical Digital Design Using
IC's. New York: John Wiley & Sons, Inc., 1977.

6. 595-2225-04, Part A. Introductory Operations.
Part B. BASIC User's Guide.
Part D. ODeratina System.

Benton Harbor, Mich.: Heath Company, 1978.

7. 595-2235-01, Part A. FORTRAN IV Introduction.
Part B. FORTRAN IV User's Guide.

Benton Harbor, Mich.: Heath Company, 1978.

8. DEC-11-LFLRA-C-D. PDP-11 FORTRAN Lanauaae Reference
Manual. Maynard Mass.: Digital Equipment Corp., 1975.

9. Singer, Michael. PDP-11 Assembly Lanauaae Proaramming
and Machine Organization. New York: John Wiley &
Sons, Inc., 1980.

10. Kocher, Carl A. "A Laboratory Course in Computer
Interfacing and Instrumentation," American Journal of
Physics. 60 (3): pp 246-51, March 1992.

11. Bok, J., Barvik, I., Praus, P., Herman, P., and
Cermakova, D. "Integrated Software Packages in the
Physical Laboratory," Computer Physics Communications.
Al (1 & 2): pp 219-24, November 1990.

12. Petrini, M. F., Dwyer, T. M., Wall, M. A., Mansel,
J. K., and Norman, J. R. "Communication Between the PC
and Laboratory Instruments," Computer A&Dlications in
the Biosciences. 6 (3): pp 161-4, July 1990.

13. Hall, B. D. "A General-Purpose Interface System for
the Laboratory," Computer Physics Communications. 61
(1 & 2): pp 239-45, November 1990.

38



APPENDIX A

USER'S MANUAL

0
39



APPENDIX A

USER'S MANUAL

Contents

1. Introduction . . . ..................... . . . . 41

2. BOOTUP Procedure ................. 41

3. FORTRAN Programming ................ 42

4. IOPACK . . . . . . . . . . . . . . . . . . . . . 42

5. CONNECT Utility . ................. 44

6. TAPEIN Utility . . . . . . . . . . . . . . . . . . 46

7. Future Devices ..... . .. .. . . . ..*. ... 47

Figures

A.1 Front Panel Drawing ............... 49

A.2 Upper Board Drawing ............... 50

A.3 Lower Board Drawing ............... 51

A.4 "GPLIS Master Logic Board" Detailed Drawing. . . . 52

A.5 Typical GPLIS Channel Implementation Drawing . . . 53

Tables

A.1 PLU Register Word Formats . . . . . . . . . . . . 54

40



USER'S MANUAL

* 1. Introduction

This User's Manual should be used as a supplement to

the Heath Reference Manuals and to the thesis text. This

manual does not describe all the details of the computer/

interface system, but it should serve as an aid to the

user. If additional information is desired regarding the

assembly language routines developed for the interface, the

user should refer to the thesis text (Chapter 3), the

software flow charts and program listings (Appendix B), and

an assembly language programming manual (e.g., Ref 9).

2. BOOTUP Procedure

a. Set switches to DC OFF, RUN, and LTC OFF.

b. Turn on AC power switches.

c. Set switch to DC ON. The computer will respond

with "$".

d. Insert disks and close doors.

e. Enter "DX" (or "dx") on the keyboard. The

computer will respond as follows:

HT-I1 H01A-5
.SET USR NOSWAP
.SET TTY SCOPE
THE PREVIOUS DATE WAS 17-DEC-82 (date will vary)
CHANGE?

f. Enter the correct date or hit RETURN. The

computer will respond as follows:

.ASSIGN DX1-DK

g. At this point, programs may be run.

41



3. FORTRAN Proaramming

a. Write a FORTRAN program through EDIT. Be sure it

has a .FOR extension.

b. Enter "R FORTRA" to run the FORTRAN compiler. The

computer responds with "*".

c. (The following steps assume your FORTRAN program

is called UPROG.FOR.) Enter "UPROG,UPROG=UPROG" to compile

UPROG.FOR (produces UPROG.OBJ and a list file UPROG.LST).

d. Exit the compiler with a CONTROL-C.

e. Enter "R LINK" to link the program. The computer

responds with "*"1.

f. Enter "UPROG=UPROG,IOPACK/F". This links the

program with the IOPACK routines to allow access to the

interface.

g. Exit LINK with CONTROL-C.

h. Run the program by entering "RUN UPROG".

4. IOPACK

IOPACK is a set of assembly language subroutines which

are linked to a user's FORTRAN program to allow the program

to use the interface. The routines are called just like

FORTRAN subroutines. Each is described below.

a. PARIN(argl,arg2)

PARIN is used to input data from a GPLIS input

channel. The first argument, argl, is the GPLIS input

channel number and must be an integer from 0 to 15. The

second argument is the input data word and must be an

integer from -32,768 to +32,767.

42



b. PAROUT(argl,arg2)

PAROUT is used to output data to a GPLIS output

channel. Its arguments are integers and are the channel

number (0 to 15) and output data word (-32,768 to +32,767)

respectively. PAROUT is used to set the timer.

Forexample, PAROUT(O,T) will set the timer to generate REQ

A once every T+1 milliseconds.

c. SERIN(argl)

SERIN is used to input a data byte from the serial

interface. Its argument is the input byte and will be an

integer from 0 to 255.

d. SEROUT(argl)

SEROUT is used to output a data byte to the serial

interface. Its argument is the data byte and must be an

integer from 0 to 255.

e. INIT

INIT sets up interrupt vectors. INIT must be

called before a program can use the interrupt capability of

the clock module. It should be called immediately before

the program segment(s) which use the WAITA or WAITB

subroutines described below. This routine has no

arguments.

f. INTOFF

INTOFF disables the interrupts. INTOFF should be

called immediately after the program segment(s) which use

the WAITA or WAITB subroutines described below. This

routine has no arguments.

43



g. INTON

INTON enables the interrupts. If desired, INTON

may be used after INTOFF is called to re-enable the

interrupts. It is not necessary to call INTON after

calling INIT, however, because INIT automatically enables

the interrupts.

h. WAITA

WAITA is used to pause a program until the

interrupt request REQ A is received. REQ A is generated by

the interface's internal clock ("Timer"). If two or more

REQ A signals are received before WAITA is called or if

WAITA is called after a single REQ A has been received, an

error message will be generated. This alerts the user to

an error in his FORTRAN program which is causing too much

time to elapse between WAITA calls. This routine has no

arguments.

i. WAITB

WAITB performs the same function as WAITA except

that it works with REQ B. REQ B is generated by using the

interface's external clock input.

5. CONNECT Utility

CONNECT is used to communicate with serial devices such

as a cassette drive or a modem.

a. Start Up

(1) Set the four baud rate selector switches to

the baud rate of the device. The chart on the side of the

computer shown how to set the switches. WARNING--If data

44



will be recorded from the device, the baud rate should be

no higher than 1200. If necessary, the baud rate of the

device should be changed to 1200 or below.

(2) Plug the device into the male or female "D"

connector.

(3) Turn on the device and enter "RUN CONNECT" on

the keyboard.

(4) The bottom line of the screen will show a

list of which CONTROL keys perform the following special

functions:

Set FULL DUPLEX
Set HALF DUPLEX
Turn on RECORD
Turn off RECORD
TRANSMIT file
EXIT

(5) Set FULL or HALF DUPLEX as required.

(6) Now use the terminal as if it were connected

directly to the device. The terminal will send all

characters except those six control characters and it will

receive all characters from the device.

b. Recording Data

To record data from a device, turn on RECORD. All data

from the device received after this will be stored in a

file called TAKEN.DAT. WARNING--Be sure to save any

previous files named TAKEN.DAT under a different file name

before turning on RECORD.

To stop recording data, either turn off RECORD or EXIT.

S

45



c. Transmitting Data

To transmit data, simply enter the TRANSMIT control

key. This causes the file GIVEN.DAT to be sent to the

device. WARNING--The file GIVEN.DAT must be created before

attempting to transmit data. The transmitted data will

appear on the screen as it is sent to the device.

SPECIAL NOTE--To transmit a file to the CYBER, enter

the following after "COMMAND-" is given:

COPYBF,INPUT,filename (where filename is any unused file

name). Now enter the TRANSMIT control key to transmit the

file. After the file is sent, enter "%EOF" to signal the

CYBER that this is the end of file. To confirm

transmission, first enter "REWIND,filename" and then

"COPYSBF,filename". This will cause the CYBER to print the

file on the screen.

d. EXIT

To leave CONNECT, simply enter the EXIT control key.

This transfers control back to the computer's monitor.

This will not disturb the device and it is possible to

reenter CONNECT by entering "RUN CONNECT" as before. The

terminal may thus be connected to the device or to the

computer as desired.

6. TAPEIN Utility

TAPEIN is used to read paper tapes. The procedure is

as follows:

a. Plug the paper tape plug into the socket marked

TAME READER.

46



b. With the tape reader's RUN/LOAD switch in the LOAD

position, thread the tape into the reader.

c. If there is enough header on the tape, the take-up

reel should be used to reel in the tape. Otherwise, the

tape will simply feed through the reader and pile up on the

table.

d. Set the RUN/LOAD switch to RUN and turn the tape

reader on.

e. Enter "RUN TAPEIN" on the keyboard. The tape will

feed through the reader and the data will be stored in the

file TAPE.DAT. WARNING--Be sure to save any previous files

named TAPE.DAT under a different file name before running

TAPEIN.

7. Future Devices

This interface was designed to be easily adaptable to

new devices. The assembly language programs have been

developed such that the user can take advantage of their

features without needing to know the details of assembly

language. However, if for some reason it becomes necessary

to modify or to add to the assembly language programs, an

excellent reference which can serve as a programmer's

manual is Ref 9.

The hardware is easily adaptable. Any serial device

which conforms to RS-232 can be plugged into the

interface. The available baud rates will almost surely

match one of the device's baud rates. The parallel

interface is also easily expandable. Additional input or

47



output channels may be connected to the GPLIS bus (see Ref

2). As presently configured, a total of 16 input and 16

output channels are possible.

The following drawing package (Figures A.1 through A.5)

further documents the interface implementation and should

be used as a reference for use and future modifications.

Following the drawing package is Table A.1 which

provides the detailed description of the word formats for

the three important Parallel Line Unit (PLU) 16-bit

registers, DRINBUF, DROUTBUF, and DRCSR described in

section 2.3 of the thesis text.

48



w

c c .0:

0-mo

w w

49



LL

0 L[L~m Ii

+
LML

+ t

0) CJ
w !

00 >
100 10W

wO0
1- 3

10 10 1

o o50



V- E i

m m 

hi

04

51



GPLIS BUS

__ _ __ _ __T_1:___7_2 4_2Y4N3 N54

OUT v 6 1 4 100

__ _ __ _ T_ _ _ _ _ _ ___ x4 IA Y2 1 y IN 09

1 191J2

DATAI~~ GNN 2AE 000006~

012345 013

, x IK (x . W-13 ab7e IPTx( 0-5 Hbove
(To 0 upu 1ous 1T 2A2u ModulT4 eKKs) 0

OUTs F63L A4 3 (Apedb A) INr 03iatfl~

Figure A.4 OIS2 Master Logi BadDeildrwIng1
C 2(As Implemented)

OUT 0 AI IY IN52



0 0

I *- I

IIII 4-
0 I n

i ov tf °,,o fn. V M•N 0 In oe

IL0 0 . I

•ou V V) C) * - W )C Y

vs :a :. : :::
6 IL

-0

3------T inT++++ ++++ a ++- -

53



Table A.1 PLU Register Word Formats

Word Bit(s) Function

DRCSR 15 REQUEST B--This bit is under control
of the user's device and may be used
to initiate an interrupt sequence or
to generate a flag that may be
tested by the program.

When used as an interrupt request,
it is asserted by the external
device and initiates an interrupt
provided the INT ENB B bit (bit 05)
is also set. When used as a flag,
this bit can be read by the program
to monitor external device status.

When the maintenance cable is used,
the state of this bit is dependent
on the state of CSR1 (bit 01). This
permits checking interface operation
by loading a 0 or 1 into CSR1 and
then verifying that REQUEST B is the
same value.
Read-only bit. Cleared by INIT when

in maintenance mode.

14-08 Not used. Read as 0.

07 REQUEST A--Performs the same
function as REQUEST B (bit 15)
except that an interrupt is
generated only if INT ENB A (bit 06)
is also set.

When the maintenance cable is used,
the state of REQUEST A is identical
to that of CSR) (bit 00).

Read-only bit. Cleared by INIT when
in maintenance mode.

06 INT ENB A--Interrupt enable bit.
When set, allows an interrupt
request to be generated, provided
REQUEST A (bit 07) becomes set.

Can be loaded or read by the program
(read/write bit). Cleared by INIT.

54



Table A.1 (continued) PLU Register Word Formats

Word Bit(s) Function

DRCSR 05 INT ENB B--Interrupt enable bit.
(cont.) When set, allows an interrupt

request to be generated, provided
REQUEST B (bit 15) becomes set.

04-02 Not used. Read as 0.

Can be loaded or read by the program
(read/write bit). Cleared by INIT.

01 CSR1--This bit can be loaded or read
(under program control) and can be
used for a user-defined command to
the device (appears only on
Connector No. 1).

When the maintenance cable is used,
setting or clearing this bit causes
an identical state in bit 15
(REQUEST B). This permits checking
operation of bit 15 which cannot be
loaded by the program.

Can be loaded or read by the program
(read/write bit). Cleared by INIT.

00 CSRO--Performs the same functions as
CSR1 (bit 01) but appears only on
Connector No. 2.

When the maintenance cable is used,
the state of this bit controls the
state of bit 07 (REQUEST A).

Read/write bit. Cleared by INIT.

DROUTBUF 15-00 Output Data Buffer--Contains a full
16-bit word or one or two 8-bit
bytes: High Byte - 15-8; Low Byte =
7-0.

Loading is accomplished under a
program-controlled DATO or DATOB bus
cycle. It can be read under a
program-controlled DATI cycle.

55



Table A.1 (continued) PLU Register Word Formats

Word Bit(s) Function

DRINBUF 15-00 Input Data Buffer--Contains a full
16-bit word or one or two 8-bit
bytes. The entire 16-bit word is
read under a program-controlled DATI
bus cycle.

Source: Ref 3:6-15,6-16.

56



APPENDIX B

SOFTWARE FLOW CHARTS AND PROGRAM LISTINGS

57



APPENDIX B

SOFTWARE FLOW CHARTS AND PROGRAM LISTINGS

Contents

Page

IOPACK Subroutine Package Top Level Flow Chart . . . . 59
Subroutine PARIN Flow Chart . ............... 60
Subroutine PAROUT Flow Chart . ........... 61
Subroutine SERIN Flow Chart . ........... 62
Subroutine SEROUT Flow Chart . . . . .... . 63
Subroutine INIT Flow Chart . . . . . . . . . . . . 64
Subroutine INTON Flow Chart ..... ............ .. 65
Subroutine.INTOFF Flow Chart .... ............ .. 65
Interrupt Routine AINT Flow Chart ... ......... .. 66
Interrupt Routine BINT Flow Chart ........... 67
Subroutine WAITA Flow Chart ................. . 68
Subroutine WAITB Flow Chart ..o ................ 69

IOPACK Subroutine Package Program Listing ......... .. 70

CONNECT Utility Flow Chart .............. 74

CONNECT Utility Program Listing .............. . 77

TAPEIN Utility Flow Chart .................. 83

TAPEIN Utility Program Listing . . . ........... 85

58



p
IOPACK Subroutine Package Top Level Flow Chart

C User links IOPACK to his

FORTRAN program !

Initalizations& Definitions

fControl returns to user program-
| until one of the following

PARIN(CHANNEL, NUMBER)
PAROUT(CHANNEL, NUMBER)
SERIN(NUMBER)
SEROUT(NUMBER)
INIT
INTON
INTOFF
WAITA
WAITB

(Individual flow charts for each of the above
are provided on the following pages)

59



p
Subroutine PARIN Flow Chart

7User calls PARIN(CHANNEL,NUMBER)

from his FORTRAN program

Arguments No Send error message
Scorrect?

•1! ~~Yes .•=

[ SetGP Channel #

Input parallel NUMBERI

60



Subroutine PAROUT Flow Chart

CUsmer calls PAROUT(CHANNEL, NUMBER)

from his FORTRAN program

Arguments No Send error message
correct?

*, Yes

Set Channel #

E Output paallNUMBER

Return to user's program

61



Subroutine SERIN Flow Chart

User calls SERIN(NUMBER)
from his FORTRAN program

I

correct?

Exit

Fipu erial NUMBE

Return to user's program

62



Subroutine SEROUT Flow Chart

User calls SEROUT(NUMBER)
from his FORTRAN program

correct?

Yes

Exit

tseria MBER

63



Subroutine INIT Flow Chart

from his FORTRAN program

I Set A vector to point to AINT j

StBvector to poitto BINT

[ Clear A & B counters

Enable A & B interrupts

64



Subroutine INTON Flow Chart

( User calls INTON a)
from his FORTRAN program

I
E En~able A & -B interrupts J

Return to user's program-)

Subroutine INTOFF Flow Chart

I'

from his FORTRAN program

Dial A' &o Binterrupts

ORetur to user's program

65



Interrupt Routine AINT Flow Chart

C REQ A signal is received )
I,

I Increment A-counter
I

Send acknowledge signal

0l

Is A-counter NReunfrom
at2 or more? ner

Yes

Send error message
(REQ A occurred before
WAITA called) 6

66



S
Interrupt Routine BINT Flow Chart

C REQ B signal is received )

F Increment B-counter

IP'
FS~end acknowledge signal

Is -ounter N eunfo
at 2 or more?/ inerp

Send error message
(REQ B occurred before
WAITB called)

67



Subroutine WAITA Flow Chart

CUser calls WAITA

from his FORTRAN program

Is Acouter No Send error message

Is A-cunter(REQ A occurred before
stl tzrWAFIA called)j

le, ,YesJI
YsIs A-counter

still at zero?

No (REQ A occurred)

Clear A-counter

ExitD

68



Subroutine WAITB Flow Chart

UUser calls WAITB

from his FORTRAN program

Is Bcouter No Send error message

Is B-cunter(REQ B occurred before
stil at eroWAITB called)

Yes IsB-counter

No(RQ B occurred)

ClerBcounter

Exit

69



IOPACK Subroftine Package

Program Listing

S

70



.TITLE ZOPACK

.RCALL .PRINT- EXIT

.GLOBL PARINMPAROUT. SERIN. SEROUT

.GLOBL MAITA. HAITS. INrT. INTON. INTQI'F
DRC SE-167'770
DROUTB=16 7772
DRINBUU 167774
NICSRaI756Io
HIUU? 1756 12
MXCSR=175614
MXBUF-175616

PCa',
START! HOF

PARINtCHANNEL.NUMBEB)
PARIN: JSl PC. CHKAiG

119 *19DRCSR $OUT/IN-I
BIC *2.DRC9R IDATA/CHAN=O (SET CHANNEL%
Nov 30, DROUTB M UITE CHANNEL
BIC 01,DRCSR *OUTIINa0 (INPUT!
POV DRINBU.0115)* tINPUT DATA
ITS PC
PAROUT(CI4ANNEL. .UNBEu,

PAROUT: JSE PC. CHKARG
119 *I.DRCSR tOUT/IN-I
BIC 02.DRCS3 ;DATA/CHANs0 (SET CHAN)
ASL 30 !SHIFT CHAN FOUR BITS
ASL N0 ; LEFT SO THE IWIRERN
ASL 30 ; IS INTERPRETED AS
ASL 30 AN OUTPUT CHAN
NOV 30. DROUTI tMIXTE CHANNELS II 03,DICSR IOUT/I~aI.DATA/CHAN&I
Nov 0(15)*.DROUTI IOUTPUT DATA
ITS PC

CHKARG! ClIP (R5)*.42 $ARE THERE 2 ARGS?
SNE ERANG !IF NO THEN ERROR
Nov *(i5)*.RO 130-CHANNEL
TST no ICHANNEL < 0
BLT ERCHAN ;IF YES THEN ERROR
CHP 30.417 ICHANNEL > 15 DECINALI
SOT ERCHAN ;IF YES THEN ERROR
ITS PC

ERARG? .PRINT ONSARO
*EXIT

NSARG: .ASCII /URONG NUNBER OF AROUKENTS/
.ASCIZ /IN CALL TO PARIN OR PAROUT/(O7)
.EVEN

ERCHAN: .PRINT *MSCHAN
.EXIT

WSCHANI .ASCII /CHANNEL NUMBER OUT OP THE.!
.A9CIZ /RANGE OF 0 TO 15/<07>
.EVEN

13171 Nov *AINTP300 !SET A VECTOR TO AINT
Nov *0. 502

71



MOV *BINT. 30 !SET Z VECTB TO PINT

CLR ACOUNT CLEAR :1NTERRU7 COUNTER A
CLR DCOUNT ;CLEAR INTERRUPT COUNTER P
BIS *140,DRCSR !ENABLE A ANZ B INTERRUPTS
RTS PC
INTERRUPT SERVICE ROUTINES

AINT' INC ACOUNT !IN: TNT CnJTEE
JSR PCACK ACVNONLEDGE REC
CMP ACOUNT,*2 ;HAVE TIO RES A'S OONE PY-
DGE Al :IF YES THEN WE HISSED ONE
RTI

AI .PRIMT OHISS.
.EXIT

WAITA: TST ACOUNT $HAS REQ A OCCURRED ALREADY:
BEG A2 ;IF NO GOTO A2
.PRINT *MISSA ;IP YES THEN RE MISSED IT
-EXIT

A2: TST ACOUNT tRAIT FOR REG A
BEG A2
CLR ACOUNT *RESET
ITS PC :RETURN

HISSA: .ASCII lREU A OCCURRED BEFORE YOU CALLED UAITA/415>(12>
•ASCIZ /CORRECT YOUR PROGRAM/(07><15>)12>
.EVEN

ACOUNT! .-ORD 0 ;INTERRUPT A COUNTER
PINT: INC DCOUNT :INC INT COUNTER B

JSR PCACY ;ACKNORLEDGE REE B
CNP BCOUNT,#2 ;.AVE TWO REG B'S GONE BY!
BGE BI ;IF YES THEN RE HISSED ONE
RTI

Di: -PRINT OHISSB
.EXIT

NAITB: TST BCOUNT ;HAS REO B OCCURRED ALREADY'
BEG 22 ;IF NO GOTO P2
-PRINT #MISSB tIF YES THEN WE HISSED IT
.EXIT

B2: TST BCOUNT SMAIT FOR REQ B
BEG 32
CLE DCOUNT ;RESET
ITS PC

MISSI: -ASCII /REO B OCCURRED BEFORE YOU CALLED WAITBTI<S5>'12>
.ASCIZ /CORRECT YOUR PROGRANl/407>(1>)(l2>
.EVEN

DCOUNT: .NORD 0 !INTERRUPT B COUNTER
ACK! BIs #l,DICSR :READ OPLIS CHAN 0

BIC *2.DRCSR ;TO ACK INTERRUPT
NOV *ODROUTR
BIC el,DRCSR
NOV DRINNU, DUMMY
ITS PC

DUMMY: .NORD 0
SERIN(NUMBER)

SERIN: JOR PCAROCHK
Si: TST7 HRCSR IUAIT FOR INPUT

3PL Sl
MOV3 NRBUF, 4(R5)+ INPUT DATA
iTS PC
SEROUT(NUMBER)

SEROUT: JSR PC,ARGCHK

72



p

S24 TSTB MXCSR !WALT FOR READY
BPL S2
MOVE 0(R5)*,NXBUF :OUTPUT DATA
RT$ PC

ARGCHK: CHP !2S)-6,1 :IS THERE ONE ARGI

BNE EISAR IIF NO THEN ERROR
ITS PC

EiSAR: .PRINT *MSSAR
.EXIT

MSSAR: .ASCII /IRONG NUMBER OF ARGUMENTS/
.ASCIZ /IN CALL TO SERIN OR SEROUT/<07'
.EVEN
INTON TURNS INTERRUPT ENABLES ON

INTON? PIS #140-DRCSR :ENABLE A ANZ F INTESRUFTS
ITS PC
INTOFF TURNS INTERRUPT ENABLES OFF

INTOFF: RIC 0140,DRCSI $DISABLE A AND B INTERRUPTS
RTS PC
AEND START

7

73



CONNECT Utility( ser enters "RUN CONNECT FowChr
fr~om opera~ting system prompt(Cat1

kiibtaliaton & Definitons j

Sý

S* o~d=mf
on 25h Weof fxx74



CONNECT Utility

B Flow Chart(Chart 2)

CNCNearwCYBER&

O~Ils kEne

CNIT.-A Set FULL flag

CNTL-BClea FULL flag

II
75 Resore

C fo

75



CONNECT Utility Flow Chart
(Chart 3)

r Save ragstr

Read block of data file

5ýG[-VEN.DAT int uff er

Get -character from buffr

Ser to modem

C

76

,N .,,i. ..



CONNECT Utility

Program Listing

77



-TITLE CONNECT

: Ti.57 PCOtRAM WILL WOER RELIABLY AT 1 L, Z nE LESS

.!ALL .LOCK.UP. -ET r., FRT. ,•T

"MRBUFMI75612 !MODEM REUF
RXCSRI175614 $MODER XCSR
RXBUFa175416 IMODER XBUF
TRCSR=177560 ITERMINAL UCS1
TRBUFa177562 'TERMINAL RBUF
TXCSR=177564 !TERMINAL XCSR
TXBUF=177566 !TERMINAL XBUF
ROz-0 'USED BY MACRO
RI=uI !CHARACTER STORAGE
R2s%2 !COUNTER
R33%3 :ADDRESS POINTER
R4=%4 :COUNTER
258%5 !COUNTER
SPz%6 !STACK POINTER
PCZ%7 !PROGRAM COUNTER

INITIALIZATIONS

START: PIC *lQ,,TRCSR !DISABLE TERM INTERRUPT
SIC *I00vRCSR $DISABLE RODEM INTERRUPT
NOV *INBUF2,HEADI IPOINT HEADI TO INNUF2
NOV *INRUFI,HEAD2 ;POINT HEAD2 TO INBUFI
CLI FULFLO !SET FOR HALF DUPLEX
CLR RECFLG ;SET RECORD OFF
NOv *I,CYDFLO !SET FOR CYPER
.PRINT #LABELS 2DISPLAY COMMANDS
aR INCHK

LABELS: .ASCII <33><152> $SAVE CURSOR POSITION
.ASCII 033><170<'61> !ENABLE 25TH LINE
.ASCII <(? <I31)(7*><40> 'MOVE TO 2!TH LINE
.ASCII /CNTL- A(FUL) BDHAF) R(REC ON!
.ASCII /T(REC OFF) E(TRNS FILE) P(EX)i
.ASCII / O(CYNER) N(NOT CYUR)/
.ASCIZ <33>(153> ;RETURN TO SAVED POSITION
.EVEN

TERM/MODER INPUT CHECK LOOP

INCNK: TSTN TICSR $TERNINAL INPUT?
3RI TEUNIN
TSTP MRCSR ;RODEN INPUT?
SRI RODIN
IS INCHK

TERMINAL INPUT HANDLER

TEURIN: NOVI TREUF.Rl ;CHAR TO RI
CUP R1,*20 'CNTL-P EXIT
REQ FINISH
CHP Eil022 'CNTL-1 RECORD ON
BEQ RECON
CHP 1i,424 ICRTL-T RECORD OFF
URO RECOFl

78



M RI.TXBU IECHOTO- TYERN

MOEM: INPUTHNDE

BlOY NRBF.l CARTOR
TSTB RTXCS !'WTAIST FORLER READYX
BEL FUODI

snOV R1STXEFSN OTR
TSTF RleCFL :RECORD ORNMTFL
BEO IRNCH I N.D ICY

TR* CYDER FLAGR sOUTINEODMURAD

M YE OVE *CIFLU :SEND CHOR CYTERM
NOTYD CL! UYFLG !0? HAFO DOUPCLEX

DRE INCHK

DUPLE ROTIES
FUSTMOVB 1.FULFL IDEC FTL DUPEXM

RD INCHK

H MODEM CL PU F ANDLER STHLFDPE

EXT ROUTIN

TIiH S? RECFLG tRECORD OH?

DYES FLAINUTNE
CYRRSRO 1CYBFFG $CLSET FILYER

319Y: L C*lOO.RS IREENAFLR MOTE INTERRP
DPRN *OFLUtrtHOF ADL

DUPEXRUTNE

OFFLAD? .ACLI '22)1711 2ITIHAULETH DULIEX

RECORIO ROUTINE

FINIH: ST ECFL IRCOR ON



0
RECON: TST !EFLG ?IS RECORD ALREADY ON'

BNE AL0N

.ENTER *IOBLK*.*C-#FFZLNAM-4-1
PC, ERENT !ERREE IN ENTEE
mOV #INBUFIR3 :POINT 13 TO INPUT BUFFER I

CLR Rs SET PLOC NUHEE TO TEfFO
MHO" 1,14 'POINT IA T' INFPUT PJFFEF

CLI R2 !SET CHAP COUN!T TO 2ER.

.!iP INCHK
ALON: .PRINT *ALONI

JNP INCHK
ALONI: .ASCIZ /RECORD IS ALREADY ON!/<07)

.EVEN
ERENT: .PRINT #ERENT1

PR FINISH
ERENTI! .ASCIZ /FATAL--ERROR IN ENTER/07>

.EVEN
FILNAN: .RAD50 /DKI

.RAD50 /TAKEN DAT/

RECORD OFF ROUTINE

RECOFF: TST RECFLG !IS RECORD ALREADY OFF?

BE5 ALOFF
CLR RECFLG ;TURN RECORD OFF
151 PC, OFF
JHP INCHK

OFF: INC R2
ROE 12 ;R2 IS NON HOED COUNT
.1RIT4 #IOBLKO,*O,R3,R2tR5
SCS ERNRI
.CLOSE #0
RTS PC

ALOFF: .PRINT *ALOFFI
jMP INCHK

ALOFFI: .ASCIZ /RECORD IS ALREADY OPF!/<07>
.EVEN

RECORD CHARACTER

RECORD' TST9 aI ;NULL?
SNE RECI !IF NO, THEN RECORD IT

Jmp INCHK 11 YES- THEN SYZP IT
RECI: mOVs R1.(R4). !PUT CHAR IN BUFFER

INC 12 ;INC CHAR COUNT
CHP R2,01000 sBUFFER FILLEDI
ROE URIBUF *IF YES. THEN WRITE BUFFER
imp INCHK ;IF NO, GET MORE CHARS

URIDUF: .NRITE *IOILKO, 00.23,400.15
BCS El11I :ERROR IN UNITE
INC 25 $INC BLOCK NURBER
NOV -2(R3),R? tPOINT 3? TO OTHER BUFFER
NOV 23,14 IPOINT 14 TO OTHER BUFFER

CL! R2 ISET CHAR COUNT TO ZERO

inP INC.K !GET MORE CHARS
ER1I: .PRINT *ERURII

JmP FINISH
ERNIlt .ASCIZ /FATAL--ERROR IN NRIT.E'''?"

.EVEN

0s



0

IOELIO: . BLKE 1 !MACRO'S SCRATCH SPACE

* TRANSMIT ROUTINE

TEAKS: NOV Rl.RISTO ;SAVE REGISTERS
NOV R2,R2STO
hMCV I, 3.R 39TO
NOV R4.R4STO
MOV R5.RSSTO
CLE R5 ;SET BLOCK NUMBER TO ZERO
.LOOKUP SIOBLKIe*1,#FILOUT
BCS ERLOO ;ERROR IN LOOKUP
NOV 2O,21 IR1s * BLOCKS IN FILE

BPL READ :IF R1<O THEN EMPTY FILE
JmP EMPTY

READ: .READR #IOBLKI,01,*INBUFI,0400,R5
BCC TEA1

JMP ERBEA ;ERROR IN READ

TEAl: INC R5 ;INC BLOCK NUMBER
NOV *INBUF1,R4 $POINT R4 TO INBUFI
CLE R2 ;SET CHAR COUNT TO ZERO

MEITE; CMPB (R4),0O *NULL?
BEG EOF
CMPB (R4),#200 ;NULL? (WITH PARITY)
BEG EOF
CMPB (R4),112 1LINEFEED?
BEG LF
CMPs (24).#212 ;LINEFEED? (WITH PARITY)
DNE TEA2

LF: TST CYPFLG tSKIP OVER LF ONLY IF CYBER
BEG TEA2
TST CRFLG ;RAS LAST CHAR CR?

BEG TRA2 IIF NO DON'T SKIP OVER
BR TEST ;IF YES SKIP OVER THIS LF

TRA2V TSTB MXCSR ;HALT rOE MODEM READY

BPL TRA2
MOVE (R4),MXBUF $SEND CHAR TO MODEM

TST FULFLO tO - HALF DUPLEX
BEG TRA4

TRA3S TST3 NRCSR ;AILT FOR ECHO
RPL TRA3
NOVE NREUF,(141 IPUT ECHO IN (34)

TRA4! TST1 TXCSR SHAIT FOR TERM READY
BPL TRA4
MOVE (14),TXBUF :ECHO TO TERM

CR7TST CRPS (145,015 !CARRIAGE RETURN!
BEG NAITPR
CHP3 (24), 215 ICR? (WITH PARITY)

DEC NAITPR
CL! CRFLG )NOT A CR, SO CLEAR FLAG

TEST, INC 14 ;POINT TO NEXT CHAR

INC R2 ;INC CHAR COUN

CMP R2,01000 :BUFFER EMPTIED?
ILT WRITE
CMP 13511 $ALL BLOCKS DONE'
ILT READ

oFp .CLOSE 01
NOV RISTORI ;RESTORE REGISTERS
NOV 129TO,12
NOV 33TO,313

81



Nov? R45TO-B&

?I" R5STC.R E
JMP 11 1C lY.

WAITPE: TST CY2FLG $WAIT FOR PROM".F ONLY IF CYBER

EEO TEST
NOV *1.CRFLO :SET CRFLG

TRA5: TSTE MRCSI !WJAIT FOR PROMPT
SPL TRA5
IIOV2 IRPuF.R? :PROMPT TO IS

T RA.6: TSTB TXCSR !WAIT FOR TERM READYz.
RPL TRA6
Nov 233.TXBUF ISEND PROMPT TO TERM

3t TEST
ERLOO: .PRINT #ERLOOI

imp FINISH
ERLOOI: .ASCII /FATAL--ERROR IN LOOKIJP/CI5>(12>

.ASCIZ /RE SURE FILE 'GIVEN.DAT' EXISTS/<07>

.EVEN
EMPTY: .PRINT *EPTYl

imp INCNK
EMPTYI: .ASCIZ /FILE *GIVEN.DAT' IS EMPTY/(07>

.EVEN
ERREA: .PRINT *ERREAI

imp FINISH
ERREAI: .ASCIZ /FATAL--ERROR IN READ51'07>

.EVER
IOBLK1: .BLKW 10 ;MACRO'S SCRATCH SPACE

FILOUT: .RAD50 IOK/
.RAD50 /GIVEN DAT/

lISTO: .WO03 0 :REGISTER TEMPORARIES

R2STO: NMORD 0
136TO: NORD I)

34STO: .NORD 0
R5STO: NOR0D 0

HEADI: .NORD 0
INBUFlS BILKU 400
HEAD2! WNORD 0
INBUF2: BILKI4 400
FULPLO: NOR03 0
IECFLG: .NO0D 0
CYBFLG: .NO03 0
CRFLG: VOID3 0

.END START

82



TAPEIN Utility Flow Chart
(Chart 1)

User enters "RUN TAPEmIN"from operating system prompt

lnituaizations & Definitions

,No

Strip olf high 8 bits & parity

No Is

Inswt LFanCR

83



TAPEIN Utility Flow Chart
(Chart 2)

SA

Write block of dlata from

buf8er to disk (4TAPE.DAr)

84



I

TAPEIN Utility

Program Listing

8

85



.TZTLE TAPEIN
.MCALL ,ENTER,. FETCH,.WRITW,.CLOSE,. EXIT,. PRINT
DRCSR-167770
DROUTB*167772
DRINBU-167774.TKS=1775770 ;TERMINAL KEYBOARD STATUS

TKB=177562 !TERMINAL KEYBOARD BUFFER
TP5-177564 !TERMINAL PRINT STATUS
TPBz177566 ;TERMINAL PRINT BUFFER
Ri=I 'INPUT ADDRESS POINTER
12=%2 ;COUNTER
l3-w? !COUNTER
14-%4 ;TEMP STORAGE
RtaR5 )NULL FLAG

FIRST FILL INPUT BUFFER

START' SIC *140tDRCSR ;ENSURE INTERRUPTS DISABLED
HOV *INPUToRI ;POINT RI TO INPUT BUFFER
NOV 41,R5 :SET MULL FLAG ON
BIC *I00,TKS ;DISABLE TERMINAL INTERRUPT
Pis #1.DRCSR $OUT/IN'I
BIC *2,DRCSR ;DATA/CHANQ0 (SET CHAN)
NOV 0I,DROUTU INRITE CHAN *1
SIC #IDRCSl IOUT/INsO (INPUT)
CLR R2 ;SET CHAR COUNTER TO ZERO
INC R2 ISET TO ONE

LI: TSTB TKS ;KEY PRESSED ON TTY?
BRI DONEIN ;IF YES THEN DONE WITH INPUT
TST DCS3 ;WHAIT FOR INPUT
BPL Li
NOV DRINlUR4 IREAD INPUT
BIC #177600.R4 IREMOVE HIGH S BITS AND PARITY
TSTD R4 $NULL?
DNE Lli ;IF NOT THEN IT'S A CHAR
TST RS SMULL FLAG OFF?
REG DONEIN SIF YES THEN THIS IS A TRAILING MULL (END!
DR LI $IF NO THEN LEADING NULL--SKIP I CONTINUE

LII: CLR R5 ICLR NULL FLAG (CHAR HAS READ)
INC R2 ;CHARACTER COUNT
MOVE 34,(RI) $READ CHAR INTO BUFFER

L2: TSTB TPS ;MALT FOR TERMINAL READY
BPL L2
NOva (RI)+,TPB $ECHO TO TERMINAL
aR Li

DONEIN: NOV DRINBU.,4 $READ NEXT CHAR
CHPD 24,0377 ;END OF TAPE?
DUE DONEIN lIF NO THEN DO AGAIN
MOVE 12,(RI)* ;INSERT LINE FEED
INC R2
NOva #15,(1i)4 SINSERT CARRIAGE RETURN
INC R2
ROD R2 122 IS NON HORD COUNT

I NON WRITE INPUT BUFFER TO DISK

.ENTER OIOBLK. O,0 OFILNAN, 0-i
BCS EBRENT SERROR IN ENTER
NOV #INPUTRI $POINT RI TO INPUT BUFFER
INC RI $SKIP OVER LEADING LFCR

8
86



|j

INC R!
DEC R2
CLR R3 !SET BLOCK NUMBER TO ZERO

L3* CMP R2,#400 ;ENOUGH WORDS TO FILL BUFFER?
BLT PART ;IF NO, THEN PART
.MRITW #IOBLK,#ORZ,#400,R3
BCS ERERI !ERROR IN WRITW
INC R3 !SET FOR NEXT BLOCK NUMBER
ADD #1000,11 !POINT TO NEXT BLOCK OF INPUT
SUB #400,R2 ;DECREASE WORD COUNT BY ONE BLOCK
BR L3

PART: .RRITU #IOBLK,*0,R1,R2,13
BCS ERURI !ERROR IN WRITE
.CLOSE #0

FINISH: BIS #100,TKS ;REENABLE TERMINAL INTERRUPT
.EXIT

ERROR ROUTINES

ERENT: .PRINT #ERENTI
BR FINISH

ERERI: .PRINT #ERRRII
BR FINISH

ERENTI: .ASCIZ /ERROR IN ENTER/
.EVEN

ERNRII: .ASCIZ /ERROR IN WRITE/
.EVEN

DK: .RAD5O /DK/
FILNAM: .RAD5O /DK/

.RAD5O /TAPE DAT/
IOBLK .BLKN 10 ;SCRATCH SPACE
INPUT: .NORD 0 HINPUT BUFFER

.END START

87



I

APPENDIX C

DESIGN CYCLE FOR CURRENT (1992) TECHNOLOGY

I

88



APPENDIX C

I DESIGN CYCLE FOR CURRENT (1992) TECHNOLOGY

Contents

Paae

1. Introduction . . . . . . ................ 90

2. Current Technology ........ ................ .. 90
2.1 Background ...................... 90
2.2 The State of the Art ..... .......... 91
2.3 Summary ........................ 92

3. Design Cycle.................... ..... . ... 93
3 .1 Background . . . . . . .. .. .. .. .. .. ..... 93
3.2 Design Cycle Details. . . . . . . . ....... 93
3.2.1 Requirements Analysis . .............. 93
3.2.2 Detailed Design and Implementation . . . . . 95
3.3 Summary . . . . . . . . .............. 96

4. Conclusion . . . . . . . . . . ............ 96

89



DESIGN CYCLE FOR CURRENT (1992) TECHNOLOGY

* 1. Introduction

Since the time this project was begun (1982), the state

of the art has advanced and the author's understanding of a

formal design cycle has matured. This appendix describes

(1) how recent advances in computer technology would affect

this project and (2) a design process which would provide a

disciplined, well-documented approach to requirements

analysis, design, implementation, and testing.

2. Current Technologv

2.1 Background. When this project was begun, an

LSI-11 minicomputer had already been acquired for use in

the laser spectroscopy laboratory. The Physics Department

had decided to use this computer to perform data

acquisition, data reduction, and experiment control. The

required task was to design and implement an interface

system for that computer. If this project were begun

today, however, newer technology might lead the Physics

Department to choose a different computer.

According to Kocher (Ref 10:246), "Advances in

integrated-circuit electronics have revolutionized the

possibilities for laboratory applications of small

computers." He also notes that the IBM PC "has become a de

facto standard . . . [and that] an abundance of inexpensive

software is available for it." (Ref 10:246) Bok et al (Ref

11:219) describe IBM PC's as having "been accepted as

industrial standards for the automation of experiments."

90



Various built-in cards and the standard RS-232C and HP-IB

interfaces allow one to "build a powerful measurement and

control unit." (Ref 11:219) Furthermore, computer software

is now on the market which is directly applicable to a

laboratory application (Ref 11:219).

If this thesis project were to be started today, the

Physics Department might select an IBM PC instead of an

LSI-11 for use in their laser spectroscopy laboratory.

Furthermore, according to Petrini et al (Ref 12:161), "Many

manufacturers now make available instruments already

packaged with hardware and software that allow personal

computers to control the machines, and to collect, store,

analyze and display data without burdening the investigator

with the computer details." Thus, technology advances in

computers as well as in the laboratory instruments

themselves would affect an interface design.

2.2 The State of the Art. An interface project, if

started today, would need to consider the current state of

the art. A sampling of the current literature uncovered

several recent articles which would have potential

application to an IBM-PC-based laser spectroscopy

laboratory interface system.

For example, serial communication using RS-232 devices

is described by Petrini et al (Ref 12). He addresses

general laboratory applications for data I/O and equipment

control. In addition, Hall (Ref 13) notes that IEEE-488 is

a widely used, well known standard for computer

91



peripherals. He describes an interface system based on the

IEEE-488 bus and provides two laboratory interfacing

examples. Two other recent articles, highlighted below,

would also have potential application to the project.

Bok et al (Ref 11) describe the automation of an

ultraviolet-visible spectrometer and a single-proton

counting apparatus. The hardware configuration employed

used standard RS-232C and HP-IB interfaces plus MetraByte

CTM-05 and PIO-12 cards to provide TTL levels for data I/O

and device control. ASYST was the commercially-available

software package selected.

Kocher (Ref 10) describes an instructional laboratory

at the Oregon State University's Physics Department. A

standard IBM serial/parallel I/O interface board was

modified (see Ref 10 for details) and incorporated into an

IBM PC-AT laboratory setup. The setup also included a

60-MHz general-purpose oscilloscope, digital multimeter,

function generator, multi-output power supply, and

prototyping breadboard. Microsoft QuickBASIC was selected

as the programming language. The laboratory course covered

the following topics: parallel I/O, serial I/O, digital-

to-analog conversion, analog-to-digital conversion,

closed-loop experiments, fast data sampling, and signal

averaging.

2.3 SummazX. If the laser spectroscopy laboratory

were being established today, the AFIT Physics Department

might select an IBM PC instead of an LSI-11 as one of the

92



major pieces of laboratory equipment. With today's

technology, many of the remaining pieces of laboratory

equipment could be selected which were manufactured to be

compatible with the IBM PC. The equipment selection would,

of course, affect the design of an interface system. In

fact, a custom-built interface might not be needed at all.

If a custom-built interface was required, however, a

sampling of the current literature indicates that several

articles exist which could potentially relate to a laser

spectroscopy application. The next section describes the

process to analyze both the interface requirements of the

actual laboratory equipment and the applicable literature

as part of the overall formal design cycle.

3. Design Cycle

3.1 Bckg• nd. Since this project was begun, the

author's experience with the Air Force acquisition process

has led to a maturing of his understanding of a formal

design cycle. If this project were begun today, a more

disciplined and better documented approach would be used as

outlined below.

3.2 Desian Cycle Details.

3.2.1 Reauirements Analysis. The first step of the

design cycle would be to document the user's top-level

requirements. These requirements would be obtained either

by interviewing Physics Department personnel or by

reviewing any existing documentation relating to the

anticipated use of the laser spectroscopy laboratory--or

93



both. The following information would need to be

S obtained: types of experiments anticipated; types of

computers and laboratory equipment anticipated; specifics

regarding interfaces, timing, purposes, data rates and

volume, and experiment durations. The anticipated

constraints on the project would also have to be obtained;

particularly maximum cost and desired schedule.

Once obtained, these requirements would be organized

into a system requirements document. A system requirements

review would then be conducted to obtain concurrence from

the user (and thesis advisor) of the validity of the

requirements. The review could be either a formal meeting

or simply a review of the requirements document by the

individuals involved. In either case, written concurrence

by the user and thesis advisor would be obtained.

The next step would be to analyze the system

requirements to derive lower-level hardware and software

requirements. The current state of the art would need to

be examined to determine if commercially-available products

could satisfy some or all of the requirements. If

commercially-available products could not meet all the

requirements or if they exceeded the stated cost

constraints, then a literature search would be conducted to

collect applicable information for a custom-designed

system. A preliminary design would then be prepared and

presented to the user in a design review. Design options

might also be presented to the user for a system which

94



might not meet all his requirements, but which could be

completed more quickly or for less cost. Again, written

concurrence would be obtained.

3.2.2 Detailed Design and Implementation. Assuming

that commercially-available products alone would not meet

all the user's requirements, the next step would be to

develop a detailed design. The preliminary design would be

decomposed into hardware and software modules which could

be individually tested. The requirements would be refined

into a set of specifications for the system. Test

procedures would be written to document how the system

would be tested to ensure it meets its specifications. A

detailed design review would be conducted to again obtain

user concurrence.

Following detailed design, hardware modules would be

breadboarded and individually tested. Tests would be

conducted using the test procedures noted above and the

results would be documented in test logs. Likewise,

software modules would be written and individually tested.

Integration of the hardware and software modules would

then follow with testing as noted above as modules are

incrementally added. Finally, an overall system test would

be performed to ensure all user requirements are met.

Once a working breadboard had been demonstrated,

implementation of the final hardware configuration could

begin. Assuming that a wire-wrapped implementation is

acceptable, individual modules would be constructed and

95



tested as they were in the breadboarding phase. Test

results would be compared to the breadboard tests to ensure

defects were not introduced. Integration and testing of

modules would proceed until a completed, functioning system

successfully passed all tests.

Before the system could be turned over to the user, a

user's manual would have to be written which documented the

operation and maintenance of the system.

The final step would be to perform a comprehensive

acceptance test to demonstrate to the user that the system

met all his stated requirements.

3.3 Summary. The design cycle outlined above provides

a structured approach to requirements analysis, design,

implementation, and testing. The approach ensures that

each step is well documented and provides for frequent

feedback opportunities to ensure the project is on track.

The focus is on strong interaction with the user from the

beginning, when his requirements are first determined, to

the end, when the system that meets those requirements is

ultimately delivered.

4. Conluion

If this project were begun today, the design approach

and the design itself would both be different. Advancing

technology has made personal computers and compatible

equipment a routine part of the laboratory environment.

Existing off-the-shelf hardware and software might be

adequate to meet the needs of a laser spectroscopy

S96



laboratory. If, however, a custom-designed interface

P system was still required, the author's current

understanding of a formal design cycle would allow him to

use a more structured, better documented approach for the

project.

P

97



I VITA

Duuglas Letson Durand was born on 28 October 1958 at

Wright-Patterson AFB, Ohio. He graduated from high school

in Dunwoody, Georgia in 1977. He attended Georgia

Institute of Technology with an ROTC scholarship and

received the degree of Bachelor of Electrical Engineering

in June 1981. Upon graduation, he received a commission in

the USAF and immediately entered the School of Engineering,

Air Force Institute of Technology.

After his period of residence at AFIT, he was assigned

to Air Force Systems Command, Space Systems Division, Los

Angeles AFB, California, from January 1983 to July 1989.

At Space Systems Division, he began his systems acquisition

career first as a project engineer for the NATO III-D

communications satellite and later as a program manager for

a highly-classified advanced space-related system.

He continued his systems acquisition career with an

assignment to Headquarters Air Force Systems Command,

Andrews AFB, Maryland, from July 1989 to the present. He

is currently serving as Manager, Advanced Space Systems,

where he focuses headquarters support functions to a broad

array of classified space-related programs.

Permanent address: 4912 Olde Village Court

Dunwoody, Georgia 30338



Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Pub#ic reporting burden for this collection of information is estimated to average i hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed. and compieting and rev ewing the collection of information. Send comments regarding this burden estimate or any other aspect of thiscollection of information, including suggestions for reducing this buritden, to Washington HeadQuarters Services. Directorate ?or Irilormation Operations and Repxrts. 1215 leflersOn
Davis Highway. Suite 1204, Arlington. VA 22202-4302. and to the Office of Management arid Budget, Paperwork Reduction Project (0704-0188). Washington. DC 20503

1. AGENCY USE ONLY (Leave blank) '2. REPORT DATE |3. REPORT TYPE AND DATES COVERED

I June 1992 MS Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

DESIGN OF A LABORATORY COMPUTER INTERFACE

6. AUTHOR(S)
Douglas L. Durand
Captain, USA"

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION
Air Force Institite of Technology (AFIT-EN) REPORT NUMBER

AFIT/GEO/ENG/92D-01

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)
An interface for the LSI-11 computer was designed and implemented so that the

computer supports data acquisition, data reduction, and equipment control. The
design includes both hardware and software and addresses both parallel and serial
input/output (I/O).

The serial incerface's hardware is simply a Serial Line Unit card. This card
plugs into the LSI-11 bus and provides the signals necessary to interface EIA
RS-232 compatible devices. A software utility was developed to allow
communication with the serial device and to allow exchange of data files.
Routines were written to allow serial I/O through a FORTRAN program.

The interface's parallel hardware includes the general purpose laboratory
interface system (GPLIS) architecture. In addition, hardware modules were
designed to convert certain device's signal levels to TTL levels. Software
utilities were developed to acquire and store parallel data and routines were
written to allow parallel I/O through a FORTRAN program.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Computer Interface, General Purpose Laboratory 105
Interface System, GPLIS 16. PRICE CODE

17. SECUITY CLASSMICATION 16. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT
UNC LAS SIFIUD IUNCLASSIFIED I UNCLASSIFIED UL

NSN 7540-01-2W-5500 Standard Form 298 (Rev. 2-89)
Prtribed by ANSI Std Z39-18
29W-102


